On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals
نویسندگان
چکیده
Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the standalone use of ECG and SCG.
منابع مشابه
A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health
Use of information and communication technology such as smart phone, smart watch, smart glass and portable health monitoring devices for healthcare services has made Mobile Health (mHealth) an emerging research area. Coronary Heart Disease (CHD) is considered as a leading cause of death world wide and an increasing number of people die prematurely due to CHD. Under such circumstances, there is ...
متن کاملContinuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals By Using Microsoft Visual C Sharp
Background: One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP) by sphygmomanometer cuff.Objective: In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference ...
متن کاملDetermining the Proper compression Algorithm for Biomedical Signals and Design of an Optimum Graphic System to Display Them (TECHNICAL NOTES)
In this paper the need for employing a data reduction algorithm in using digital graphic systems to display biomedical signals is firstly addressed and then, some such algorithms are compared from different points of view (such as complexity, real time feasibility, etc.). Subsequently, it is concluded that Turning Point algorithm can be a suitable one for real time implementation on a microproc...
متن کاملPredicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کاملAutomatic Identification of Systolic Time Intervals in Seismocardiogram
Continuous and non-invasive monitoring of hemodynamic parameters through unobtrusive wearable sensors can potentially aid in early detection of cardiac abnormalities, and provides a viable solution for long-term follow-up of patients with chronic cardiovascular diseases without disrupting the daily life activities. Electrocardiogram (ECG) and siesmocardiogram (SCG) signals can be readily acquir...
متن کامل